metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[(µ₂-2-amino-4,5-dimethybenzenesulfonato- $\kappa^2 N:O$)(μ_2 -2-methylpyrazine- $\kappa^2 N: N'$ silver(I)] monohydrate]

Xian-Wu Dong* and Yu-Jie Li

Jilin Agricultural Science and Technology College, Jilin 132000, People's Republic of China

Correspondence e-mail: hljwuhua@163.com

Received 23 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.007 Å; Hatom completeness 89%; R factor = 0.032; wR factor = 0.084; data-to-parameter ratio = 17.7.

In the title compound, $\{[Ag(C_8H_{10}NO_3S)(C_7H_6N_2)]\cdot H_2O\}_n$, each Ag^I cation is four-coordinated by three N atoms from two different 2-methylpyrazine ligands and one -NH2 group of a 2-amino-4,5-dimethybenzenesulfonate ligand, and by one sulfonate O atom, in a distorted tetrahedral coordination geometry. The Ag^I centres are bridged by both types of ligands, forming a two-dimensional network. N-H···O hydrogen bonds and O···O interactions complete the structure.

Related literature

For related literature, see: Cote & Shimizu (2004); Li et al. (2005); Liu et al. (2007).

Experimental

Crystal data $[Ag(C_8H_{10}NO_3S)(C_7H_6N_2)] \cdot H_2O$ $M_r = 420.23$ Orthorhombic, P212121 a = 7.2340 (4) Å b = 11.7610 (5) Å c = 18.913 (1) Å

Data collection

Rigaku R-AXIS RAPID diffractometer

 $V = 1609.10 (14) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.40 \text{ mm}^{-1}$ T = 292 (2) K $0.35 \times 0.29 \times 0.25 \text{ mm}$

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.615, \ T_{\max} = 0.711$

13881 measured reflections 3667 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.085$	
S = 1.02	
3667 reflections	
207 parameters	
4 restraints	

3083 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.053$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1369 Friedel pairs Flack parameter: 0.00 (3)

Table 1

A

Selected	geometric	parameters	(À, °	')
	0		· /	

sg1-N2	2.243 (3)	Ag1-N3 ⁱ	2.469 (4)
4g1-N1	2.301 (4)	Ag1-O3 ⁱⁱ	2.525 (3)
V2-Ag1-N1	141.78 (13)	N2-Ag1-O3 ⁱⁱ	125.98 (12)
$V2 - Ag1 - N3^{i}$	102.19 (12)	$N1 - Ag1 - O3^{ii}$	87.53 (14)
$1 - Ag1 - N3^{i}$	98.44 (13)	N3 ⁱ -Ag1-O3 ⁱⁱ	84.57 (12)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{N1 - H2N \cdots O2}$ $N1 - H1N \cdots O1W^{ii}$	0.82 (3)	2.36 (4)	2.982 (5)	133 (4)
	0.82 (5)	2.15 (5)	2.946 (5)	164 (5)

Symmetry code: (ii) x + 1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070314) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2532).

References

- Cote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374-9383.
- Liu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

doi:10.1107/S1600536807063672

supplementary materials

Acta Cryst. (2008). E64, m80 [doi:10.1107/S1600536807063672]

Poly[[(μ_2 -2-amino-4,5-dimethybenzenesulfonato- $\kappa^2 N$:*O*)(μ_2 -2-methylpyrazine- $\kappa^2 N$:*N*')silver(I)] monohydrate]

X.-W. Dong and Y.-J. Li

Comment

Silver(I) sulfonate coordination polymers have received much attention for their interesting structural features and potential applications (Cote & Shimizu, 2004). Recently, silver(I) sulfonate compounds with nitrogen-based secondary ligands have been reported (Li *et al.*, 2005). We report here the crystal structure of the title compound.

Selected geometric parameters are listed in Table 1. The Ag^{I} cation is four-coordinated by three N atoms from two different 2-methylpyrazine ligands and one $-NH_{2}$ group of anion, and one sulfonate O atom in a distorted tetrahedral coordination geometry (Fig.1). The Ag—N distances in the title compound are similar to those in related compounds (Liu *et al.*, 2007). The Ag^I centers are doubly bridged by both types of ligands to form a two-dimensional network (Fig.2), which are linked *via* N—H···O hydrogen bonds (Table 2) and O···O interacitons into a three-dimensional framework (Fig.3).

Experimental

An aqueous solution (10 ml) of 2-amino-4,5-dimethylbenzenesulfonic acid (1 mmol) was added to solid Ag_2CO_3 (0.5 mmol) and stirred for several minutes until no further CO_2 was given off. 2-Methylpyrazine (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Crystals of the title compound were obtained by slow evaporation of the solution at room temperature for 7 d.

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$ The amino H-atoms were located in a difference Fourier map and its positional parameters were refined, With the N—H distances restrained to 0.82 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. H atoms bonded to water molecules could not be located and were therefore omitted.

Figures

Fig. 1. The coordination environment of atom Ag1 in the title compound, showing 30% probability displacement ellipsoids [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) x + 1, y, z].

Fig. 2. View of a two-dimensional network in the title compound.

Fig. 3. Part of the three-dimensional network of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen-bonding interactions have been omitted.

$Poly[[(\mu_2-2-amino-4,5-dimethybenzenesulfonato-\kappa^2N:O)(\mu_2-2-methylpyrazine-\kappa^2N:N') silver(I)] monohydrate]$

Crystal data	
$[Ag(C_8H_{10}NO_3S)(C_7H_6N_2)]$ ·H ₂ O	$F_{000} = 848$
$M_r = 420.23$	$D_{\rm x} = 1.735 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3667 reflections
a = 7.2340 (4) Å	$\theta = 2.0 - 27.5^{\circ}$
b = 11.7610 (5) Å	$\mu = 1.40 \text{ mm}^{-1}$
c = 18.913 (1) Å	T = 292 (2) K
$V = 1609.10 (14) \text{ Å}^3$	Block, yellow
Z = 4	$0.35 \times 0.29 \times 0.25 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	3667 independent reflections
Radiation source: fine-focus sealed tube	3083 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
T = 292(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.615, \ T_{\max} = 0.711$	$k = -15 \rightarrow 15$
13881 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.085$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
3667 reflections	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$
207 parameters	Extinction correction: none
4 restraints	Absolute structure: Flack (1983), with 1369 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.57509 (5)	0.32306 (3)	0.368222 (17)	0.04386 (11)
C1	0.1920 (5)	0.5165 (3)	0.4190 (2)	0.0308 (8)
C2	0.1248 (6)	0.6189 (4)	0.3919 (2)	0.0393 (10)
H2	0.0045	0.6211	0.3746	0.047*
C3	0.2286 (7)	0.7160 (4)	0.3898 (2)	0.0444 (11)
C4	0.4079 (8)	0.7131 (4)	0.4174 (2)	0.0455 (11)
C5	0.4746 (6)	0.6123 (4)	0.4454 (2)	0.0408 (10)
H5	0.5927	0.6113	0.4647	0.049*
C6	0.3719 (5)	0.5128 (3)	0.4457 (2)	0.0316 (9)
C7	0.5321 (8)	0.8154 (5)	0.4164 (3)	0.0684 (16)
H7A	0.4744	0.8765	0.4418	0.103*
H7B	0.5535	0.8383	0.3684	0.103*
H7C	0.6478	0.7967	0.4384	0.103*
C8	0.1486 (9)	0.8237 (4)	0.3565 (3)	0.0723 (16)
H8A	0.1767	0.8879	0.3859	0.108*
H8B	0.0169	0.8160	0.3521	0.108*
H8C	0.2018	0.8347	0.3105	0.108*
C9	0.3884 (6)	0.1510 (4)	0.2665 (2)	0.0455 (12)
H10	0.2963	0.2058	0.2704	0.055*
C10	0.3556 (7)	0.0582 (4)	0.2262 (3)	0.0493 (12)
H11	0.2415	0.0505	0.2040	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	0.6419 (6)	-0.0062 (4)	0.2511 (2)	0.0413 (10)
H12	0.7349	-0.0602	0.2459	0.050*
C12	0.6755 (6)	0.0873 (4)	0.2934 (2)	0.0410 (10)
C13	0.8545 (8)	0.1001 (6)	0.3321 (4)	0.078 (2)
H24A	0.8528	0.1694	0.3590	0.117*
H24B	0.9545	0.1024	0.2988	0.117*
H24C	0.8712	0.0368	0.3635	0.117*
N1	0.4536 (5)	0.4089 (3)	0.46717 (18)	0.0371 (8)
N2	0.5462 (5)	0.1673 (3)	0.30075 (16)	0.0366 (8)
N3	0.4829 (5)	-0.0226 (3)	0.21749 (19)	0.0435 (9)
01	0.1454 (4)	0.3189 (3)	0.36351 (17)	0.0529 (8)
O2	0.0582 (5)	0.3433 (3)	0.48525 (17)	0.0518 (8)
O3	-0.1281 (4)	0.4287 (3)	0.3932 (2)	0.0573 (9)
O1W	-0.2470 (5)	0.4027 (3)	0.57266 (16)	0.0484 (8)
S1	0.05493 (14)	0.39276 (9)	0.41453 (6)	0.0369 (2)
H1N	0.539 (7)	0.421 (4)	0.495 (2)	0.055*
H2N	0.383 (6)	0.362 (3)	0.485 (2)	0.055*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.04702 (19)	0.03504 (16)	0.04951 (17)	0.00277 (16)	-0.00239 (16)	-0.00726 (15)
C1	0.029 (2)	0.030 (2)	0.0339 (19)	-0.0029 (17)	0.0002 (16)	0.0016 (16)
C2	0.036 (2)	0.036 (2)	0.046 (2)	0.0036 (18)	-0.0017 (17)	-0.0005 (18)
C3	0.057 (3)	0.030 (2)	0.046 (2)	0.003 (2)	-0.003 (2)	0.0004 (18)
C4	0.054 (3)	0.037 (2)	0.045 (2)	-0.011 (2)	0.001 (2)	-0.0067 (18)
C5	0.036 (2)	0.041 (2)	0.045 (2)	-0.006 (2)	0.0013 (18)	-0.0043 (18)
C6	0.027 (2)	0.034 (2)	0.0334 (19)	0.0037 (17)	-0.0002 (15)	-0.0014 (16)
C7	0.078 (4)	0.050 (3)	0.077 (3)	-0.026 (3)	-0.005 (3)	0.002 (3)
C8	0.087 (4)	0.033 (2)	0.097 (4)	0.002 (3)	-0.014 (3)	0.012 (3)
C9	0.038 (3)	0.049 (3)	0.049 (2)	0.009 (2)	-0.0029 (19)	-0.012 (2)
C10	0.040 (2)	0.058 (3)	0.050 (3)	0.007 (2)	-0.012 (2)	-0.016 (2)
C11	0.038 (2)	0.036 (2)	0.050 (2)	0.0044 (19)	-0.001 (2)	-0.007 (2)
C12	0.039 (2)	0.038 (2)	0.046 (2)	-0.001 (2)	0.000 (2)	-0.001 (2)
C13	0.050 (3)	0.066 (4)	0.118 (5)	0.006 (3)	-0.031 (3)	-0.032 (4)
N1	0.031 (2)	0.0407 (19)	0.0398 (18)	0.0009 (16)	-0.0075 (16)	0.0044 (15)
N2	0.0350 (19)	0.0370 (18)	0.0377 (16)	-0.0004 (19)	0.0021 (14)	-0.0052 (15)
N3	0.047 (2)	0.041 (2)	0.0423 (19)	-0.0042 (19)	-0.0043 (17)	-0.0079 (16)
O1	0.0533 (18)	0.0402 (16)	0.0653 (19)	-0.0123 (17)	0.0106 (17)	-0.0140 (19)
O2	0.0434 (18)	0.049 (2)	0.0626 (18)	-0.0032 (17)	0.0058 (15)	0.0194 (15)
O3	0.0284 (16)	0.048 (2)	0.095 (3)	-0.0068 (14)	-0.0196 (16)	0.0175 (18)
O1W	0.0428 (18)	0.0499 (19)	0.0526 (18)	0.0038 (16)	-0.0054 (15)	0.0033 (15)
S1	0.0255 (5)	0.0328 (5)	0.0524 (6)	-0.0029 (4)	-0.0004 (5)	0.0053 (4)

Geometric parameters (Å, °)

Ag1—N2	2.243 (3)	C8—H8C	0.96
Ag1—N1	2.301 (4)	C9—N2	1.326 (6)

Ag1—N3 ⁱ	2.469 (4)	C9—C10	1.353 (7)
Ag1—O3 ⁱⁱ	2.525 (3)	С9—Н10	0.9300
C1—C2	1.396 (6)	C10—N3	1.333 (6)
C1—C6	1.396 (6)	C10—H11	0.93
C1—S1	1.763 (4)	C11—N3	1.329 (5)
C2—C3	1.368 (6)	C11—C12	1.381 (6)
С2—Н2	0.93	C11—H12	0.93
C3—C4	1.399 (8)	C12—N2	1.334 (6)
C3—C8	1.528 (7)	C12—C13	1.495 (7)
C4—C5	1.386 (6)	C13—H24A	0.96
C4—C7	1.501 (7)	С13—Н24В	0.96
C5—C6	1.386 (6)	C13—H24C	0.96
С5—Н5	0.93	N1—H1N	0.82 (5)
C6—N1	1.417 (5)	N1—H2N	0.82 (3)
C7—H7A	0.96	N3—Ag1 ⁱⁱⁱ	2.469 (4)
С7—Н7В	0.96	O1—S1	1.454 (3)
С7—Н7С	0.96	O2—S1	1.459 (3)
C8—H8A	0.96	O3—S1	1.448 (3)
C8—H8B	0.96	O3—Ag1 ^{iv}	2.525 (3)
N2—Ag1—N1	141.78 (13)	N2—C9—H10	118.6
N2—Ag1—N3 ⁱ	102.19 (12)	С10—С9—Н10	118.6
N1—Ag1—N3 ⁱ	98.44 (13)	N3—C10—C9	121.6 (4)
N2—Ag1—O3 ⁱⁱ	125.98 (12)	N3—C10—H11	119.2
N1—Ag1—O3 ⁱⁱ	87.53 (14)	C9—C10—H11	119.2
N3 ⁱ —Ag1—O3 ⁱⁱ	84.57 (12)	N3—C11—C12	123.1 (4)
C2—C1—C6	119.0 (4)	N3—C11—H12	118.5
C2—C1—S1	119.9 (3)	C12-C11-H12	118.5
C6—C1—S1	121.0 (3)	N2-C12-C11	119.9 (4)
C3—C2—C1	122.7 (4)	N2-C12-C13	119.0 (4)
С3—С2—Н2	118.7	C11—C12—C13	121.1 (4)
C1—C2—H2	118.7	C12—C13—H24A	109.5
C2—C3—C4	118.6 (4)	C12—C13—H24B	109.5
C2—C3—C8	119.8 (5)	H24A—C13—H24B	109.5
C4—C3—C8	121.7 (4)	C12—C13—H24C	109.5
C5—C4—C3	119.1 (4)	H24A—C13—H24C	109.5
C5—C4—C7	118.8 (5)	H24B—C13—H24C	109.5
C3—C4—C7	122.1 (4)	C6—N1—Ag1	107.7 (2)
C4—C5—C6	122.5 (4)	C6—N1—H1N	111 (4)
С4—С5—Н5	118.7	Ag1—N1—H1N	108 (3)
С6—С5—Н5	118.7	C6—N1—H2N	116 (3)
C5—C6—C1	118.1 (4)	Ag1—N1—H2N	107 (3)
C5—C6—N1	120.4 (4)	H1N—N1—H2N	108 (4)
C1—C6—N1	121.3 (4)	C9—N2—C12	116.8 (4)
С4—С7—Н7А	109.5	C9—N2—Ag1	118.4 (3)
С4—С7—Н7В	109.5	C12—N2—Ag1	124.8 (3)
H7A—C7—H7B	109.5	C11—N3—C10	115.8 (4)
С4—С7—Н7С	109.5	C11—N3—Ag1 ⁱⁱⁱ	124.6 (3)

supplementary materials

Н7А—С7—Н7С	109.5	C10—N3—Ag1 ⁱⁱⁱ	119.2 (3)
H7B—C7—H7C	109.5	S1—O3—Ag1 ^{iv}	133.33 (19)
С3—С8—Н8А	109.5	03—\$1—01	113.6 (2)
С3—С8—Н8В	109.5	O3—S1—O2	112.8 (2)
H8A—C8—H8B	109.5	O1—S1—O2	111.3 (2)
С3—С8—Н8С	109.5	O3—S1—C1	106.66 (19)
H8A—C8—H8C	109.5	O1—S1—C1	105.76 (18)
H8B—C8—H8C	109.5	O2—S1—C1	106.0 (2)
N2—C9—C10	122.8 (4)		
C6—C1—C2—C3	0.6 (6)	C10—C9—N2—Ag1	-178.1 (4)
S1—C1—C2—C3	-175.8 (4)	C11-C12-N2-C9	0.6 (6)
C1—C2—C3—C4	-1.5 (7)	C13—C12—N2—C9	-178.7 (5)
C1—C2—C3—C8	177.4 (5)	C11—C12—N2—Ag1	179.1 (3)
C2—C3—C4—C5	0.4 (7)	C13—C12—N2—Ag1	-0.2 (6)
C8—C3—C4—C5	-178.4 (5)	N1—Ag1—N2—C9	63.6 (4)
C2—C3—C4—C7	179.3 (5)	N3 ⁱ —Ag1—N2—C9	-57.6 (3)
C8—C3—C4—C7	0.4 (7)	O3 ⁱⁱ —Ag1—N2—C9	-149.7 (3)
C3—C4—C5—C6	1.6 (7)	N1—Ag1—N2—C12	-114.9 (3)
C7—C4—C5—C6	-177.3 (4)	N3 ⁱ —Ag1—N2—C12	124.0 (3)
C4—C5—C6—C1	-2.5 (6)	O3 ⁱⁱ —Ag1—N2—C12	31.8 (4)
C4—C5—C6—N1	172.5 (4)	C12-C11-N3-C10	0.8 (7)
C2—C1—C6—C5	1.4 (6)	C12—C11—N3—Ag1 ⁱⁱⁱ	173.4 (3)
S1—C1—C6—C5	177.7 (3)	C9—C10—N3—C11	0.4 (7)
C2-C1-C6-N1	-173.6 (4)	C9—C10—N3—Ag1 ⁱⁱⁱ	-172.7 (4)
S1—C1—C6—N1	2.8 (5)	Ag1 ^{iv} —O3—S1—O1	62.2 (4)
N2-C9-C10-N3	-1.1 (8)	Ag1 ^{iv}	-65.6 (4)
N3—C11—C12—N2	-1.3 (7)	Ag1 ^{iv} —O3—S1—C1	178.4 (3)
N3-C11-C12-C13	177.9 (5)	C2—C1—S1—O3	-10.7 (4)
C5—C6—N1—Ag1	-90.6 (4)	C6—C1—S1—O3	172.9 (3)
C1—C6—N1—Ag1	84.2 (4)	C2-C1-S1-O1	110.6 (3)
N2—Ag1—N1—C6	-116.6 (3)	C6—C1—S1—O1	-65.8 (4)
N3 ⁱ —Ag1—N1—C6	5.7 (3)	C2—C1—S1—O2	-131.2 (3)
O3 ⁱⁱ —Ag1—N1—C6	89.8 (3)	C6—C1—S1—O2	52.5 (4)
C10-C9-N2-C12	0.5 (7)		

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H2N…O2	0.82 (3)	2.36 (4)	2.982 (5)	133 (4)
N1—H1N····O1W ⁱⁱ	0.82 (5)	2.15 (5)	2.946 (5)	164 (5)
Symmetry codes: (ii) $x+1$, y , z .				

Ø 01W Fig. 2

Fig. 3